Recognizing Avatar Faces Using Wavelet-Based Adaptive Local Binary Patterns with Directional Statistical Features

نویسندگان

  • Abdallah A. Mohamed
  • Marina L. Gavrilova
  • Roman V. Yampolskiy
چکیده

In this paper, a novel face recognition technique based on discrete wavelet transform and Adaptive Local Binary Pattern (ALBP) with directional statistical features is proposed. The proposed technique consists of three stages: preprocessing, feature extraction and recognition. In preprocessing and feature extraction stages, wavelet decomposition is used to enhance the common features of the same subject of images and the ALBP is used to extract representative features from each facial image. Then, the mean and the standard deviation of the local absolute difference between each pixel and its neighbors are used within ALBP and the nearest neighbor classifier to improve the classification accuracy of the LBP. Experiments conducted on two virtual world avatar face image datasets show that our technique performs better than LBP, PCA, multi-scale Local Binary Pattern, ALBP and ALBP with directional statistical features (ALBPF) in terms of accuracy and the time required to classify each facial image to its subject.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelet-BasedMultiscale Adaptive LBP with Directional Statistical Features for Recognizing Artificial Faces

Recognizing avatar faces is a very important issue for the security of virtual worlds. In this paper, a novel face recognition technique based on the wavelet transform and the multiscale representation of the adaptive local binary pattern (ALBP) with directional statistical features is proposed to increase the accuracy rate of recognizing avatars in different virtual worlds. The proposed techni...

متن کامل

Wavelet Based Statistical Adapted Local Binary Patterns for Recognizing Avatar Faces

In this paper, we propose a novel face recognition technique based on discrete wavelet transform and Local Binary Pattern (LBP) with adapted threshold to recognize avatar faces in different virtual worlds. The original LBP operator mainly thresholds pixels in a specific predetermined window based on the gray value of the central pixel of that window. As a result the LBP operator becomes more se...

متن کامل

[THIS Recognizing Artificial Faces using Wavelet Based Adapted Median Binary Patterns

Recognizing avatar faces is a challenge and very important issue for terrorism and security experts. Recently some avatar face recognition techniques are proposed but they are still limited. In this paper, we propose a novel face recognition technique based on discrete wavelet transform and Adapted Median Binary Pattern (AMBP) operator to recognize avatar faces from different virtual worlds. Th...

متن کامل

Recognizing Artificial Faces Using Wavelet Based Adapted Median Binary Patterns

Recognizing avatar faces is a challenge and very important issue for terrorism and security experts. Recently some avatar face recognition techniques are proposed but they are still limited. In this paper, we propose a novel face recognition technique based on discrete wavelet transform and Adapted Median Binary Pattern (AMBP) operator to recognize avatar faces from different virtual worlds. Th...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Trans. Computational Science

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2013